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• Chaotic behavior of granular chains 

 Weakly nonlinear regime: Long-lived chaotic Anderson-like 

localization 

 Highly nonlinear regime: equilibrium chaotic state 

 

• DNA models 

 Lyapunov exponents 

 Different dynamical regimes 

 DNA melting 

 Deviation Vector Distributions 

• Summary 



Energy Distributions 

We consider normalized energy distributions 

being the energy of particle ν.  
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measures the number of stronger excited modes in zν.  

Single site excitation P=1. Equipartition of energy P=N.  



Lyapunov Exponents (LEs) and  

Deviation Vector Distributions (DVDs) 
Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  
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λ1=0  Regular motion ( t-1) 

λ10  Chaotic motion 

Deviation vector:   
v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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DVD: 



Granular media 

Examples: coal, sand, rice, 

nuts, coffee etc. 

1D granular chain (experimental control of nonlinearity and disorder) 



Hamiltonian model 

Hertzian forces between spherical beads. Fixed boundary conditions.  

[x]+=0 if x<0: formation of a gap. ν: Poisson’s ratio, ε: Elastic modulus. 



Hamiltonian model 

Hertzian forces between spherical beads. Fixed boundary conditions.  

[x]+=0 if x<0: formation of a gap. ν: Poisson’s ratio, ε: Elastic modulus. 

Disorder both in couplings and masses 

Rn  [R, αR] with α ≥ 1  



Eigenmodes and single site excitations 

Disorder realization 

with N=100 beads 

Displacement 

excitation of bead n 

Participation number 

of eigenmodes. 

About 10 extended 

modes with P>40 

Achilleos et al. (2017) ArXiv:1707.03162 



Weak nonlinearity: Long time evolution 

Delocalization Delocalization Localization 



Weak nonlinearity: Chaoticity 

Weakly chaotic motion: 

Delocalization 

Long-lived chaotic 

Anderson-like 

Localization 

mLCE 

Power 

Spectrum 

Distribution 



Strong nonlinearity: Equipartition 

The granular chain 

reaches energy 

equipartition and an 

equilibrium chaotic 

state, independent of 

the initial position 

excitation.  



DNA structure 
Double helix with  two types of bonds: 

• Adenine-thymine (AT) – two hydrogen bonds 

• Guanine-cytosine (GC) – three hydrogen bonds 



Hamiltonian model 

Nearest neighbors coupling potential  

K=0.025 eV/Å2, ρ=2, b=0.35 Å-1 

Bond potential energy (Morse potential) 

GC: D=0.075 eV, a=6.9 Å-1 

AT: D=0.05 eV, a=4.2 Å-1 

Peyrard-Bishop-Dauxois (PBD) model 
[Dauxois, Peyrard, Bishop, PRE (1993)] 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=1 (100% AT bonds) 
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Disorder realizations 
Different arrangements of AT and GC bonds. 

Periodic boundary conditions 

PAT=1 (100% AT bonds) 

PAT=0.4 (40% AT bonds) 



Lyapunov exponents (E/n=0.04, PAT=0.3) 

1 realization, 1 initial condition 
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1 realization, 1 initial condition 

1 realization, 10 initial conditions 



Lyapunov exponents (E/n=0.04, PAT=0.3) 

1 realization, 1 initial condition 

1 realization, 10 initial conditions 

10 realizations, 10 initial conditions 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 
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GC chains 

more chaotic 
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Homogeneous chain 
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AT chains 

more chaotic 
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Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

AT chains 

more chaotic 

GC chains 

more chaotic 

Type of chain 

does not play 

a role 



Values of Lyapunov exponents 

(Error of mLCE)/mLCE 
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Values of Lyapunov exponents 

(Error of mLCE)/mLCE 



DNA denaturation (melting) 
Melting: large bubbles forming in the DNA chain as bonds break 

As yn increases the exponentials in  

tend to 0, the system becomes effectively linear 

and the mLCE →0. 
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DVD and the formation of bubbles 



DVD and the formation of bubbles 
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DVD and the formation of bubbles 
Relation between the concentration 

of the deviation vector at a site and 

the formation of a bubble at that site. 



Mixing of the DNA chain 
Mixing parameter α = Number of alternations in the chain (AT and GC). 

α=4 



Mixing of the DNA chain 

α=4 

Example case: N=10, NAT=4, NGC=6.  

Extreme cases: α=2 and α=8 

Mixing parameter α = Number of alternations in the chain (AT and GC). 



Mixing of the DNA chain 

α=4 

Example case: N=10, NAT=4, NGC=6.  

Extreme cases: α=2 and α=8 

Mixing parameter α = Number of alternations in the chain (AT and GC). 



Effect of mixing 

The more heterogeneous chains are slightly less chaotic 

α 

Probability distribution function P(α) 



Summary 
• Granular chain model  

 Moderate nonlinearities: although the overall system behaves chaotically, 

it can exhibit long lasting energy localization for particular single particle 

excitations. 

 Sufficiently strong nonlinearities: the granular chain reaches energy 

equipartition  and an equilibrium chaotic state, independent of the initial 

position excitation.  

• DNA model  

 Heterogeneity influences the behavior of the mLE and the system’s 

chaotic behavior. 

 There seems to be a relation between the concentration of the DVD at a 

site and the formation of a bubble. 

 Mixing does not influence significantly the system’s chaoticity. 

 The behavior of DVDs can provide important information about the 

chaotic behavior of a dynamical system. 

 

 

 


